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Abstract-During the day, water in a Iakc or rcscrvoir absorbs solar radiation according to Beer’s law. As 
the dcplh dccrcascs towards the short. more of ~hc radialion pcnctratcs lo the botlo~n, Icading to ;I region 
of H’armcr water auachcd to Ihc lower boundary which is ;I polcntially unstable tcmperaturc profile. This 
silualion is modcllcd by ;I lluid contained in ;I trian_eulnr domain with ;L horizontal upper surface. The lluid 
is subject lo inlcrnal heating associalcd with Beer’s law and ;I bottom boundary heat llux associated with 
lhc radialion that is not absorbed by the water column. Previous work suggests that the prefcrrcd mode 
for the instability consists or longitudinal rolls with their ;IXC’S aligned with the slope. As the bottom slope 
bccomcs small. the stability problem bccomcs indcpcndcnt of the base llow and the originally thrcc- 
dimensional (3-D) problem is reduced IO a two-dimensional (2-D) problem bctwccn horizontal and parallel 
pIales. A quasi-static. linear stability analysis suggests lhal. for geophysical parameters. ihc model is locally 

unslablc in il region ccntrcd array I‘rom the shore. 

1. INTRODUCTION 

THI: I;LMXIING of a lake or reservoir basin usually 

involves the inundation of many small valleys around 
its pcrimctcr. Thcsc Roodcd valleys (which arc then 
called sidearms) arc typically only a few mctrcs deep 

u,hcrc they join with the main body of lhc reservoir. 
Sidearms arc of’tcn well protected from the wind and 
so thermal forcing associated with differential heating 
and cooling is an important mechanism for promoting 
cxchangc bctwccn the sidearm and the main body of 
the rcscrvoir. In a rcccnt paper, Farrow and Patterson 
[I] dcvelopcd a model for the daytime circulation 
in a lake or rcscrvoir sidearm, based on the natural 
convection of a fluid contained in a two-dimensional 
(2-D) triangular domain with a horizontal upper SLIT- 

fact. The flow was driven by the buoyancy induced 
by two heating mechanisms. First. an internal heating 
term given by Q = Q,) exp (,I:‘) C s ’ where rl is the 
attenuation cocficicnt and Z’ is measured positive 
upwards from lhc upper surface was included in the 
tcmpcraturc ccluation. This internal heating term is 
formulated from Beer’s law for the absorption ofsolal 
radiation (see. for example, Rabl and Nielson [?I). 
Second. a boundary heat flux was applied at the slop- 
ing bottom, the strength of which depended on the 
an~ount of radiation penetrating the cntirc local 
depth. Thus. in the shallow regions, the depth aver- 
aged volumetric heating rate is greater than in the 
dccpcr regions, leading to a surface flow out from the 
shallow, near shore regions to the deeper parts. Field 
measurcmcnts [3] have indicated that this mechanism, 
and the corresponding reverse circulation generated 
at night by surface cooling, may be responsible for 
significant transport of suspended or dissolved 
material from the near shore regions of lakes to the 
central parts. 

In ref. [I]. asymptotic solutions for the 7-D (1.’ = 0. 
?I?!,’ = 0) tcmperaturc and flow fields were found as 
the bottom slope of the model sidearm shown in Fig. 
I bccamc small. As will bc seen below. these solutions 
showed that the temperature structure could be div- 
ided into two regions. Near the shore (s’ = 0). most 
of the radiation rcachcs the bottom and this. com- 
bincd with vertical conduction and the topography. 
lcads to nearly vertical isotherms with a potentially 
unstable tcmpcraturc gradient near the bottom 
boundary. The source ofthe potential instability is the 
heat flux boundary condition applied at the bottom 
boundary. Further out in the decpcr regions, very 
little of the radiation reaches the bottom and most is 
absorbed in a relatively shallow layer near the surface 
and so in this region the isotherms are horizontal. 
These results are consistent with available field obser- 
vations of reservoir sidearms. The aim of this paper 
is to examine the stability of the asymptotic solutions 
of ref. [I] and to determine a Grashof number below 
which secondary motion will not occur. 

The stability problem discussed in this paper falls 
into a large class of Bknard type stability problems 
and includes the effects of sloping and non-parallel 
boundaries, non-monotonic temperature protiles and 
fixed flux rather than fixed temperature boundary con- 
ditions and the results therefore have a much wider 
applicability than the particular problem discussed 
here. In the present case, the source of the instability 
is a heat flux applied along a nearly horizontal bound- 
ary. The results for heated inclined plates in an infinite 
fluid [4, 61 and inclined, differentially heated rec- 
tangular cavities [7,9] suggest that when the boundary 
that is the source ofthe instability is nearly horizontal 
then the least stable mode consists of longitudinal 
vortices with their axes aligned with the slope, as 

shown in Fig. 1. This is in contrast to the wave insta- 
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NOMENCLATURE 

A bottom slope 
A, B, D,, E,, K, K*, P,, R matrices for 

numerical method 

C/J specific heat of water 

.Y acceleration due to gravity 
Cl Grashofnumber. .~al,,/(p,C,,ti’r~‘) 
Gr, critical Grashof number 
Gr: minimum over s of Gr, 

Gr,,,,. minimum Grashof number 
i J-l 
I identity matrix 

II, 17, II’ non-dimensional velocities : 
II = u’/(A Gr w?), o = o’/(A Gr KV) and 
11’ = w’/(A ’ Gr KU) 

u’, 1”. Il.’ velocities 
V, W perturbation velocities 
s, JJ, : non-dimensional coordinate system : 

s = Aqs’, ~1 = I$ and z = 11:’ 
s’, J’, :’ Cartesian coordinate system. 

- vertical 
AZ discretization step, 1 /J. 

10 intensity of radiation incident on the 
surface 

J number of grid points 
k wave number 
k, critical wave number 

If pressure 

P non-dimensional pressure, 
p’~al”/(cpfil~~) 

P perturbation pressure 
Re (c) real part of complex number P 
s growth rate of perturbation 
I non-dimensional time, !‘tiq2 
1’ lime 
T non-dimensional temperature, 

Greek symbols 

; 
thermal expansion coefficient 
thermal boundary layer thickness 

8 perturbation parameter 

‘I attenuation coefficient 
0, 0 perturbation temperature 
ti thermal diffusivity 
1’ kinematic viscosity 

KI matrix for numerical method 

PO reference density 
f f  Prandtl number, V/K 

G perturbation stream function 
Y vector for numerical method. 

CT’-- To)~nC~h-rll~o 
T’ temperature Subscripts 

To reference temperature 0 k, = 0 solution 
u vector for numerical method s partial differentiation. 

bility which consists of amplifying waves travelling up 
the slope. In the current work, longitudinal vortices 
are the assumed form of the instability. 

An important aspect of the stability problem under 
consideration in this paper is that the base tem- 
perature solution is not monotonic. This is because 
the internal heating term formulated from Beer’s law 
leads to stable temperature gradients while the bottom 
boundary heating leads to unstable gradients. This 
means that the model sidearm does not necessarily 
become unstable over the entire local depth. A prob- 
lem of this kind was studied by Matthews [IO] where 

FIG. I. Schematic of the geometry of the flow domain and 
the assumed form of the 3-D instability. 

the background temperature structure was cubic, 
leading to a stable-unstable-stable density structure. 
Matthews found that a convective cell was set up in 
the central unstable region with a counter rotating cell 
in each of the stable regions driven by momentum 
transferred from the central region via viscosity. A 
similar problem was discussed by Roberts [I I], who 
considered water at close to its density minimum. 
Thus, even though the temperature profile was linear, 
the density profile was not with stable fluid overlying 
unstable fluid. In that paper, the most important effect 
of the stable layer was to isolate the unstable layer 
from the surface boundary condition which leads to a 
radical change in the critical wave number. A similar be- 
haviour appears in the current case as will be seen later. 

In Secti& 2 of this paper, the linear stability equa- 
tions are established for the day time model con- 
sidered in ref. [I]. The resulting equations, though 
linear, are not amenable to direct analysis. However, 
the nature of the temperature boundary conditions 
allows some assumptions to be made that simplify the 
analysis, at least for part of the problem, and this is 
done in Section 3. The results of Section 3 are not 
conclusive and so in Section 4 the full stability equa- 
tions are solved numerically. The analytical and 
numerical results are discussed in Section 5. 
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2. PROBLEM FORMULATION 

For the problem under consideration in this paper, 
the non-dimensional Navier-Stokes equations in 
three dimensions are 

= -p~++(A*u,,+u.,.~+~~;,) (I) 

~7, + A’ Gr(uu, + A - ‘L’L’,. + IvL~,) 

= --p,.+cr(A’v,,+u,:,,+a;;) (2) 

A ‘II’, + A“ Gr(vw, + A - z~w~,. + ww;) 

= -/I: + aA ‘( A’w,.,. + y,:,. + wzr) + T (3) 

T,+A’ G~(uT,+A~‘L~T,.+I~T~) 

= A ’ T,, + T,,. + TTz + e’ (4) 

Ah, +r,.+A’wz = 0 (5) 

with boundary conditions 

11 = L’ = M’ = rJ on Z= --s (6) 

u, = ~7: = II- = 0 on : = 0 (7) 

T==O on :=O (8) 

T,i = -em on z = -.y (9) 

and the initial conditions u = z’ = w = T = 0 at t = 0 
and z = --s is the bottom boundary and z = 0 is the 
free surface. The non-dimensionalization scheme is 
summarized in the Nomenclature. These scales are 
obtained by using the vertical length scale r~-’ and 
the time scale (ICI?*)-’ and assuming that the most 
important terms are buoyancy, pressure, vertical 
shear and inertia. A more detailed discussion of the 
non-dimensionalization scheme is given in ref. [I]. 
The e’ term on the right-hand side of equation (4) 
represents the internal heating due to the absorption 
of solar radiation. The heat flux bottom boundary 
condition (9) is derived by assuming that the energy 
that is not absorbed by the water column is absorbed 
by the bottom and then re-emitted as a boundary heat 
flllX. 

In ref. [I], at 2-D asymptotic solution for equations 
(l)-(9) was found as A -+ 0. Mathematically, this is 
equivalent to taking the lowest order in A, setting 
v  = 0 and neglecting variations in the y  direction in 
equations (l)-(9). In what follows, this asymptotic 
solution is denoted by T”‘, U(O), MJ(” and p(O) where 
each of these functions is independent of y  and, as 
will be seen later, only T”’ is required in the present 
analysis. For the purposes of this paper, it is assumed 
that the O(A’) solution is quasi-static ; that is, the 
evolution of the @A’) solution does not affect its 
instantaneous stability. The significance of this kind 
of assumption has been considered by a number of 
authors [l2-141 who found that the assumption was 
not valid for a step change in the temperature, in 
which case the critical Gr was severely underestimated. 
In the present case, the fixed flux boundary conditions 

ensure that there are no step changes in the tem- 
perature structure. 

The O(A’) solution is now perturbed according to 
the expressions 

11‘ = II”“) + 5 w 

T= T”‘+E@ 

/J = /I”’ +Ef (IO) 

where E c I is the perturbation parameter. The c/A’ 
factor of the M’ perturbation ensures that the per- 
turbation velocities V and W in the (y, :) plane scale 
in the same way. There is no perturbation to the s 
component of the velocity since the assumed form 
of the instability consists of longitudinal vortices as 
shown in Fig. I. Substituting the perturbed solutions 
(IO) into equations (l)-(5) and linearizing with 
respect to E and A yields a system of equations for the 
perturbing quantities 

Gr Wu!” = -P .I (11) 

v, = -P! + o( v,:,. + V,,) (12) 

w, = -P,+c(y,.,.+ w,,)+o (13) 

@,+Gr WT;” = O,:,.+O,; (14) 

v,,+ w, = 0. (1% 

Note that the only place that the @A’) velocity enters 
the equations is via the x-momentum equation (I I) 
and only u(O) and T”’ are involved in equations (I l)- 
(15). By eliminating the pressure perturbation P from 
equations (12) and (13), the stability equations can be 
made independent of the zero order velocity. This is 
not surprising since, as A + 0, the dimensional vel- 
ocities vanish. In fact, it was shown in ref. [I] that the 
dimensional horizontal velocity was O(A), hence, if 
the velocity were to have an effect on the stability 
problem, A must appear as a parameter of the stability 
problem. Since A has been explicitly excluded from 
the stability equations by linearizing with respect to 
A, it follows that the stability is independent of u(O) 
and only a knowledge of T”’ is required. The bound- 
ary value problem for T”’ is 

T’o’ = T!f’ +e’ , __ 

T”’ = 0 at t = 0. 

T!O) = 0 on z = 0 

(16) 

(17) 

(18) 

Ti”J = -e-” on z = -,y (19) 

which is a standard unsteady, one-dimensional (I-D) 
heat conduction problem, the solution of which is [I] 
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FIG. 2. Temperature prolilcs (equation (20)) [or various times at : (a) .V = I : (b) .Y = 5 

, 
T”“=~-e’+~.+-+:.r+~(I-e~‘) 

xexp(- pJ,)cos(~~:). (20) 

Figure 2 shows a series of temperature profiles at 
different times at two different .Y locations from cqua- 
tion (20). In Fig. 2(a), most of the radiation penetrates 
to the bottom. leading to an increase in temperature 
with depth near the bottom. In Fig. 2(b). the local 
depth is greater meaning that most of the heat is 
absorbed internally, leading to stable temperature 
gradients near the surface. Note that T’“’ does not 
reach steady state since heat is continuously being 

added and none is allowed to escape either through 
the boundaries or horizontally. A quasi-steady state 
is achieved when the transient terms in equation (20) 
have died away after which time the temperature pro- 
file is unchanged except for an increase in the vertically 
averaged temperature. Figure 3 shows isotherms in 

FIG. 3. Tcmpcrature contours at I = I .O showing the nearly 
vertical isotherms near the tip and the largely horizontal 
isotherms further out from the tip. The contour interval 

is 1.0. 
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the model sidearm at / = I. For s < 2. the isotherms 
arc nearly vertical while for s > 5. they are close to 

horizontal since most of the radiation is absorbed near 

the surface and the bottom boundary plays a less 
important role in determining the temperature 

structure. 

Eliminating the pressure from equations (12) and 
(13) and introducing a stream function tj where 

I,’ = -4, and I+’ = $, yields 

V’ll/, = OVJI~ +a, 

0, + Gr $, Tl”’ = v% (21) 

whcrc V’ = ?‘ii~~‘+i’/c’:‘. The s-momentum cqua- 

tion (I I) is no longer part of the stability problem 

under consideration in this paper. Thus. the initial 3- 
D stability problem has been reduced to a 7-D prob- 

Icm in the infinite strip -s < : < 0 in the (J,. :) plant. 

The boundary conditions are 

0, =0 on I= -s,O 

$=$_=O on :=-s. (72) 

The above scaling has the physical intcrprctation that 

any instability will be a local phenomenon. This has 

the conscquencc that s is now only a parameter of the 
stability problem and serves to specify what the local 

conditions arc. 

The small disturbances arc now assumed to have 

the particular form 

0 = Re (I)(:) e”+“‘) 

II/ = Rc {iktl/(:) c”+lA’ ). (23) 

Here. k is the (real) wave number of the disturbance, s 

the instantaneous growth (or decay) rate. Substituting 
these expressions into the stability equations (2 I) gives 

(D’-k2-s)0 = -G,.,+DT”” (34) 

(D2-k’)(D1-k2-.s/b)t~ = -0 (25) 

where D = i/c: and fI and $ arc functions of z only. 
lntercst hcrc lies in under what condition is the system 

marginally stable, that is when s = 0. Substituting 

s = 0 into the above equations yields the marginal 

stability equations 

(D’-k’)U = -Gr(k; s,r)k’$DT”” 

(D’-,(-‘)‘,) = -0 (26) 

with the boundary conditions 

0, = 0 on : = 0, --.\ 

* = ll/:: = 0 on z = 0 

I(/=*:=0 on :=--s. (27) . 

These two equations and their associated boundary 

conditions represent an eigenvalue problem for 
Gr(k; s. ,) where. as suggested by the notation, the 

eigenvalue is a function of the parameters k, s and 1. 
Because the equations and boundary conditions are 

homogeneous there will only bc certain values of GI 

that will allow a non-trivial solution. The Gr that is 
of most interest here is the minimum over k of the 

smallest positive Gr at each value of k since only 

positive values of Gr arc physically rcalisablc. The 
task. then. is to calculate the critical Grashof number 

Gr, where GY, is given by 

Gr,(r. I) = min Gr “,,” (/; : .Y, I) (‘8) 
A > II 

whcrc Gr,,,,,,(k ; .v. I) denotes the smallest positive GI 

at a particular value ofk, .\-and 1. The critical Grashol 

number Gr, is a function of .Y and I. The aim of this 
paper is to arrive at a lower bound on Gr below which 

secondary motion will not occur and this thercforc 

corresponds to the minimum over s of Gr, and is 
denoted by Gr,*. 

3. ANALYTIC SOLUTION 

Unfortunately. the stability equations (76) include 

the term -Gr k’rj~DT”” which makes solution of the 
equations dihicult to hnd for a gcncral DT’“‘. 

However. Chapman and Proctor [ 151 have shown that 

if DT”” is constant and the upper and lower boundary 
conditions on 0 arc that the flux vanishes then the 

critical wave number at which Gr,,,,, occurs is k = 0. 

In fact. they show that the zero critical wave number 

holds for both linear and non-linear instabilities. Even 
though in the current cast DT”” is not constant, this 

property of the stability problem can be exploited to 

find an expression for the critical Grashof number 
analytically for at least part of the parameter range. 

Following Roberts [I I]. $, 0 and Gr, are cxpandcd 

in the following way fork K I : 

GI, = GI,,, + k’ Gr,? + 

0 = O,,+k’ll,+ ... 

I/J = $,,+k’$?+ . . . . (39) 

The marginal stability equations (76) only include 
even powers of k and so only even powers of k are 

included in the above expansions. Substituting these 

expansions into equations (26) and equating like 
powers of k yields a sequence of linear equations that 

can bc solved rccursivcly. The O(k”) equations arc 

D’O, = 0 

D”$,, = -O,, (30) 

which have the simple solutions (after using the 

boundary conditions) 

o,, = I 

lb,, = - ~x:(~+S)~(3:-S). (31) 

Note that I/I{, given above consists of a convective cell 

that occupies the entire local depth. The value of Cl,,, 
can bc obtained by a solvability condition at the next 

order. The O(k’) temperature perturbation equation 

is 
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D’0? = II,,-Gr,, $,,DT’“‘. (32) 

Integrating the above equation with respect to : over 
the local depth and using the no flux boundary con- 
ditions yields 

s 

0 

s 

0 
o= O,, dr - Cl,” Il/“DT’“’ d: (33) 

-\ -1 

which can bc written as (after substituting for O,, and 

ti”) 

- 48.~ 

Substituting for DT “’ into the above equation yields 
an expression for GI,,, which is a function of .Y and t 

Gr,,, = 576s 576(1-e- ‘)-72s(3+5em‘) 
[ 

144 
+12.r3-72S2e-‘-.uS+~ 

1 
-I x (- 1)“(8-(,ln)7 ,-("n Qzf . (35) 

Figure 4 shows a series of curves of Gr,, for various 
times. Note that even though 7”“’ does not have a 
steady state since the average temperature increases 
without limit with time, as discussed previously, DT”” 
does reach a steady value and the time at which that 
occurs depends on X. The time for DT”’ to reach a 
steady value increases with .Y and is associated with 
the time taken for heat to diffuse across the local 
depth. This fact manifests itself in Fig. 4 via the con- 
vergence of all the curves as .X + 0. Another property 

of the curves in Fig. 4 is the singular behaviour of 
GK,,, as x--t 0. The reason for this is that DT’“’ is 
bounded ass -+ 0 but viscosity will increase in import- 
ance as the local depth vanishes and thus the model 
is unconditionally stable as s + 0. 

For a fixed I, Gr,,, given by equation (35) is singular 
at a particular s which corresponds to the denomi- 
nator in equations (35) vanishing. At I = 0.005, Gr,” 
is singular at s = I and at t = co, GI;,, is singular at 
.Y z 1.4. For values of x greater than the singular 
value, GI,,, is negative and the resulting curves do 
not appear in Fig. 4. The singular behaviour and the 
associated negative values for Gr,, arise because there 
is a shift in the nature of the overall temperature 
structure as .Y becomes close to the singular value. The 
shift occurs as the main component of the heating 
changes from the bottom boundary heating for small 
.Y to the internal e’ heating for large s. The e’ heating 
is stabilizing and so the negative Gr,,i has the physical 
interpretation that if the fluid is to become unstable 
over the entire water column, gravity must change 
sign. A similar behaviour was noted by Roberts [I I]. 
Roberts considered water at close to its density mini- 
mum and thus even though the background tem- 
perature structure was linear, the density was not with 
stable fluid overlying an unstable region. Roberts 
found a similar departure from the k, = 0 property 
when the stably stratified region dominated the 
density structure. 

Despite the stably stratified surface region at large 
s, there is still a region near the bottom boundary 
where the temperature is increasing with depth since 
there is a heat flux boundary condition at z = --s. 
This can be seen in Fig. 2(b). Clearly this region would 
become unstable if the temperature gradients were 
sufficiently large and yet the results of the present 
analysis suggests that these profiles are uncon- 
ditionally stable. This inconsistency can be attributed 

FIG. 4. Graphs of Gr,, (equation (35)) at various times as a function of x. 
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directly to the zero critical wave number assumption 
used in the above analysis. The zero critical wave 
number assumption is based on the fixed flux bound- 
ary conditions applied at : = 0 and -X. However, as 
s increases the unstable region near the bottom is 
isolated from the z = 0 boundary by a stably stratified 
surface region. Hence. the zero critical wave number 
assumption will not necessarily hold for large s since 
the boundary condition felt by the unstable region is 
not necessarily insulated. The effect of a non-zero 
critical wave number is addrcsscd in the next section 
where the stability equations (26) are solved numeri- 
cally with no assumptions about the critical wave 
number. 

As shown in Fig. 4. the values of Gr,,, decrease with 
increasing I, indicating that the model becomes less 
stable with time, but approaching the values indicated 
by the I = x result. This is to be expected for the 
following masons. The vertical temperature structure 
arises via two mechanisms: internal heating and a 
boundary heat flux. Only the heat flux boundary con- 
dition at z = --s gives rise to unstable temperature 
gradients. This means that the unstable temperature 
gradient must be a maximum at: = -.v; there are no 
mechanisms available to give rise to greater unstable 
temperature structures within the fluid. The unstable 
region is restricted to the conductive boundary layer 
near : = ---sand the temperature gradient across that 
layer is nearly constant with time since it is fixed at 
1 = - s. Thus, as time increases and the boundary 
layer thickness increases, the same temperature gradi- 
ent is applied over a greater depth. This process 
increases the local Grashof number based on the 
boundary layer thickness which in turn leads to the 
temperature profile becoming less stable as time 
increases. 

The aim of this paper is to calculate a critical 
Grashof number below which secondary motion will 
not occur. For a particular time and assuming that 
the critical wave number is zero, this will be the mini- 
mum over .Y of GI;,,. Assuming that the heating phase 
has been underway for 12 h, t7 = 2 m ’ and molecular 
values for ti (and so I2 h corresponds to a non-dimen- 
sional time of r = 0.025) yield a tentative value for 
the critical Grashof number below which secondary 
motion will not occur of Gr: = 4.2 x IO’. This value 
is tentative since it is not clear from the analysis of 
this section when the zero critical wave number 
assumption breaks down and whether the breakdown 
will affect the value of Grr. The numerical results of 
the next section will show that the breakdown does 
not effect the value of Gr:. Also, Gr,* = 4.2 x IO” is 
likely to be an underestimation of the true critical 
Grashof number due to effects that are not included 
in the model under consideration in this paper. These 
include the effects of sidewalls in the v-direction that 
would, via boundary conditions, put a lower limit on 
the critical wave number. If  Gr,i, is a strong function 
of k in the neighbourhood of li = 0 then the effects of 
any sidewalls could be important. The effects of a 

non-zero critical wave number and the importance of 
sidewalls are examined in the next section. 

4. NUMERICAL SOLUTION 

In this section, the full stability equations (26) are 
solved numerically with no assumptions made about 
the critical wave number. The method used is an adap- 
tation of a method described by Patterson [ 161 which 
is an extension of a method described by Keller [I71 
for solving certain eigenvalue problems. The method 
is described briefly below. 

Firstly, 0 is eliminated from the marginal stability 
equations (26) leading to an equation for II/ 

(D’ -k2)311/ = k? G,., tiJ)T”” (36) 

with the boundary conditions 

t,/t = D’IJ z D(D’--/i’)$ = 0 on ; = 0 

II/ = D$ = D(D’-X-‘)$ = 0 on z = -..y. 

(37) 

The above sixth order ordinary differential equation 
is translated into a system of six first order ordinary 
differential equations by introducing new variables 
t,V’r = D$, II/“’ = Dt//“,. . . $I” = Dt,V”. This leads 
to a system of equations that can be written in matrix 

0 1 0 0 0 0 

0 0 I 0 0 0 

0 0 0 I 0 0 

0 0 0 0 I 0 

0 0 0 0 0 1 
kh+k’Gr, DT’O’ 0 -3kJ 0 3k’ 0 

with the boundary conditions 

*  

*  
II) 

*I?’ 

#3’ 

*  
I41 

$15) 

(38) 

The above formulation can be written in the more 
compact form 

DY -R($I’ = 0 

AY’],,o+B’&-., = 0 (40) 

where Y is a six-row column vector of $, . . , t,V” and 
R(Z) the 6 x 6 matrix of equation (38). 

The system of equations (40) is now vertically dis- 
cretized over J grid points. Let zj = x(jAz- I), 
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.j = 0.. . J. whcrc A: = I/J. Taking central differ- 
ences about j- l/2 ofequations (40) yields the system 
of algebraic equations 

&WY, ,I-R((:,+:,~ ,)/Z)f,(Y,+Y, ,) =O. 

.j= I,. ..,J (41) 

with 

AY (I + BY’, = 0. (42) 

The system of equations (41) and (43) can bc written 

A 0 0 ... 0 B 

E, D, 0 ... 0 0 

0 Ez D, ... 0 0 
. . . : : 

6 il 0 ... D;. , 0 

0 0 0 ... E, D, 

where E, and D, arc 6 x 6 matrices and are given by 

E, = - ;I-;R((r,+r,- ,)/3) 
L 

D, = ;-I-$((,+,- ,),Z) (4) 

where I is the 6 x 6 identity matrix. Equation (43) can 
alternatively be written simply as KU = 0 where K is 
a 6(J+ 1) x 6(J+ I) matrix and U is a column vector 
with 6(J+ I) elements. The equation KU = 0 rep- 
resents a system of 6(J+ I) linear homogeneous equa- 
tions in 6(J+ I) unknowns. Since the system is homo- 
geneous, the system will only have a non-trivial 
solution ifdet (K) = 0. The only variables of the prob- 
lem are Gr and /i. This, then, forms the basis of the 
numerical method; finding the smallest positive GI 
that leads to the matrix K being singular. 

The matrix K is 6(J+l) x 6(5+ I) and so cal- 
culating det (K) is computationally expensive for large 
values of J. The number of operations to calculate the 
determinant of a general 6(5+ I) x 6(J+ 1) matrix is 
O((J+ I)‘). However, by carrying out a little more 
manipulation, the problem can be further reduced, 
greatly speeding up the numerical solution. 

Let D=diag(I, D,,..., DJ) then D-‘=diag(I, 
D,‘,..., D; ‘). Premultiplying K by D- ’ yields 

A 0 ... 0 B 

-P, I ‘.. 0 0 
D~-lK= : : . . . i ; 

0 . 
(45) 

o... I 0 

0 0 .‘. -P, I 

where P, = -D; ‘E,. Postmultiplying the matrix 
D- ‘K by the matrix 

r 
I 0 

0 I 

I 0 

p, 1 

yields the result 

A 0 ... 0 BP, B 

-P, I .” 0 0 0 1 

-P, ... 0 0 0 

. . . . (46) . ., 

0 ‘. . P; , I 0 

0 “’ 0 0 I i 

Hence, defining rr, = P, and K, = rr,+ ,P,. j = 
J- I,. . I. the matrix D- ‘K can be diagonalized to 
the form 

AfBn, Bnz ... Bn, B 

0 I 0 0 
K*= ; ! ‘., ; ; (47) 

0 0 I 0 

0 0 . . 0 I 

Hence, det(K) = Oodet(K*) = Oodet(A+Bn,) = 
0 where A +BK, is a 6 x 6 malrix. Calculating A+ 
Bn, takes O(J+ I) operations, considerably shorten- 
ing the time it takes to test each value of Cr. 

The aim of the algorithm. then, is to minimize over 
k the smallest positive eigenvalue GK,,,~, for particular 
values of .v and I. This involves first fixing k and then 
calculating the smallest eigenvalue Gr,,i, for that k. A 
Golden Section minimization procedure [I81 is used 
to perform the minimization. This minimum and the 
associated k at which it occurs are the critical values 
for the given s and /. 

All the calculations in this paper used 50 grid points. 
Increasing the number of grid points beyond 50 had 
no discernible effect on the results. 

5. RESULTS AND DISCUSSION 

Figure 5 shows a graph of Gr, calculated both 
numerically and analytically as a function of .Y for 
various times. At t = 0.05, the two calculations have 
excellent agreement for s < I .I but for I > 1.1. the 
two curves diverge. Corresponding plots at different 
times display the same behaviour; excellent agreement 
for s smaller than some critical value above which 
they diverge. For x smaller than the critical value, the 
discussion at the end of Section 3 about the k, = 0 

solution is as relevant to the numerical calculation as 
it was for the analytical calculation. 

The divergence of the analytical and numerical 
results in Fig. 5 can be attributed directly to a break- 
down of the zero critical wave number assumption 
that is an essential part of the analysis of Section 3. 
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FIG. 5. Comparison between the numerically (solid) and analytically (dashed) (equation (35)) calculated 
critical Grashof number for various times. At I = 0.05, the analytical value G,;” is negative for s > 1.2. 

Figure 6 shows a plot of the numerically calculated This suggests that the thickness of the unstable 
critical wave number as a function of x for various layer near z = Y is the same for all s. This is to be -. 
times. For I = 0.05 there is a clear bifurcation away expected since the thickness of the unstable region is 

from k, = 0 at .Y z I. I just prior to the corresponding the same as the thickness of the conduction boundary 
curves in Fig. 5 diverging. The reason for this jump layer near z = --x since it is the boundary condition 
has been discussed in Section 3 and is due to the there that leads to the instability. A conduction 
unstable layer near z = --.x being isolated from the boundary layer with thickness 6 grows with time like 
insulated upper boundary by a layer of stably strati- 6 w J(H) [I91 which, importantly, is independent of 
fied fluid. Note that in Fig. 5, the numerically cal- the strength of the boundary heat flux and hence, in 
culated Gr, at t = 0.0005 and 0.05 are apparently ex- this case, independent of .Y (as long as there are no 
ponential functions of x for large x. This is consis- other factors affecting its growth). This then explains 
tent with the strength of the destabilizing boundary con- the constant k, for large s. Also, the maximum 
dition at z = --x decaying like e-“. Note also that for unstable gradient in this region is e-” which, if applied 
these times k, approaches a constant value as .Y ---t KI. over the conduction boundary layer, would lead to an 

Y 

FIG. 6. Numerically calculated critical wave number as a function of x for various times showing the 
bifurcation from k, = 0. Note that for finite I, k, tends to a constant value as s becomes large. 
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k 

FIG. 7. Plots of the numerically calculated Gr, as a function of k for s = 0.5 (solid lint) and 1.5 (dashed 
line). 

exponential growth of Grc with s which can be seen 
in Fig. 5. Finally, for finite I, kr, tends to a constanl 
value as s -+ a as can be seen in Fig. 6 and this value 
decreases as I increases from 0.005 to 0.05 which is 
consistent with the instability being limited to the 
boundary layer. 

The above argument does not apply as I + m since 
in this case, there is no boundary layer and the tem- 
perature profile is fully developed. Figure 5 shows that 
at r = W, Gr, still grows exponentially with s as s 
becomes large but at an increased rate. Figure 6 shows 
that for I = m, the critical wave number is apparently 
unbounded for large s which is quite different to the 
large s behaviour of the finite time case. The large 
time behaviour of i)T”‘/k is given by 

aT’“’ I 
--+ -elf-(z+.r) as t-02,. 

2: 
(48) 

.Y 

There are two competing heating mechanisms here; 
internal heating which is stabilizing and the boundary 
heating which is destabilizing. These two mechanisms 
are in balance within the water column when TI”’ = 0. 

If:= -x+<thenT!.“‘=Oif<satisfiesse-‘=<e-’. 
There are two roots to this equation, one of which is 
clearly 5 = I which corresponds to the insulated 
upper boundary condition. The other root cannot be 
expressed in a closed form but denoting this root by 
5” then tU + se’ as s -+ co. This shows that the 
point within the water column where the vertical tem- 
perature gradient vanishes moves closer to the lower 

FIG. 8. The lower bound Grr as a function of time as calculated in this paper. 
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boundary as s becomes large. Thus, the thickness of 
the unstable region decreases with increasing s. This 
explains the large s behaviour of the I = -X curves in 
Figs. 5 and 6. In Fig. 6, the wave number of the least 
stable mode scales with the inverse of the depth of the 
unstable layer and hence increases without limit as s 
bccomcs large. In Fig. 5, two effects combine to give 
rise to a rapid increase in GI; as .Y increases. The first 
is the vanishing thickness of the unstable layer and 
the second is the decreasing magnitude of the unstable 
gradient across that layer. The former effect is absent 
in the finite time regime and thus the I = x curve in 
Fig. 5 rises more rapidly for large s than the finite I 
curves. 

In view of the fact that the critical wave number is 
a function of s, the question of wave number selection 
needs to be addressed. This is a complicated question 
and the results of this paper cannot provide a clear 
answer. Figure 7 shows a plot of Gr,,, (the smallest 
positive Gr for secondary motion at each /i) as a 
function of k at two different values of s at I = 0.05. 
At s = 0.5. the critical wave number is k, = 0 while at 
s = I .5. k, z 2.3. This figure paints a rather confusing 
picture of how the secondary motion will develop. 
Note that for s = 1.5. GV “,,” + x8 ask --f 0. that is. the 
tcmpcrature structure is unconditionally stable to zero 
wave number perturbations. This is consistent with 
the analytical solution Grco which is negative at 
s = I .5. Graphs of Gr ,,,,” for other values of s above 
s z I. I show a similar behaviour. Thus, even if there 
is a region near the tip which is unstable with k, = 0, 

away from the tip no such instability can occur. Alter- 
natively, if there is an instability away from the tip 
with X-, ;t 0 then it is certainly possible to have sec- 
ondary motion with k, # 0 near the tip since the tem- 
pcrature profile there will be unstable to non-zero 
wave number disturbances if Gr is sufficiently large. 
Howcvcr, Chapman and Proctor [l5], have shown 
that for a linear temperature profile and fixed flux 
boundary conditions such secondary flows will be 
unstable to smaller wave number disturbances though 
it is not clear that their results can be generalized to 
include the current case. Hence, one cannot conclude 
from the results of this paper what the nature of the 
secondary motion will be. This would require a full 3- 
D analysis with the possible inclusion of non-linear 
effects which is well beyond the scope of this paper. 

6. CONCLUDING REMARKS 

The aim of this paper was to determine a critical 
Grashof number Gr, below which one would expect 
the @A’) solution of ref. [I] to be stable. This lower 
bound Gr,* is plotted in Fig. 8 which shows Gr: as a 
function of time. At a particular time, for values of 
Gr less than the corresponding Gr,*, the flow is stable 
for all values of s. For larger values of Gr, the flow is 
unstable in some region centred away from the tip. 

Geophysical values of Gr [3] range from - IO5 for 
typical turbulent values of the diffusivity up to - IO” 

for molecular values. According to Fig. 8. both these 
values will be above the critical value after I2 h (which 
corresponds to t z 0.025 and IO for molecular and 
turbulent diffusivities. respectively) which suggests 
that secondary motion will occur in real sidearms 
during the day. The secondary motion associated with 
the instability will be restricted to a small region near 
the shot-c since GI; incrcascs cxponcntially with dis- 
tance from the tip. I f  the secondary motion has a long 
wavelength then it would be indistinguishable from 
the motion that would already exist because of the 
transverse topography. Alternatively, if the secondary 
motion has a short wavelength then it will consist 
of rising plumes of warm water emanating from the 
bottom boundary. 

A~,li/toll,/rr!~[,r~l~/~/.~-This work was carried out while the 
first aulhor was a rccipicnl of an Australian Poslgraduale 
Research Award and a Centre for Waler Research Schol- 
arship. Both authors are graterul for the useful comments 

made by John Taylor and Andrew Barry on an earlier draft 
of this paper. 
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